Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system

نویسنده

  • Guillermo Gosset
چکیده

The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzyme III stimulation of cyclic AMP synthesis in an Escherichia coli crp mutant.

Cyclic AMP (cAMP) synthesis in Escherichia coli is altered in cAMP receptor protein mutants and in phosphoenolpyruvate:sugar phosphotransferase transport system mutants. The stimulation of cAMP synthesis observed in cAMP receptor protein-deficient mutants is largely dependent upon enzyme III of the phosphoenolpyruvate:sugar phosphotransferase transport system. The phosphoenolpyruvate:sugar phos...

متن کامل

Genetic Transformation of Amylase Gene to Ruminal Bacteroides Species Using Conjugation Consequence for Improvement of Rumen Enzyme

Rumen bacterial strains can potentially be manipulated to perform functions different from wild type species. The most numerous species of bacteria in the rumen and gut are species of the familyBacteroidetes, whichcan have the potential for genetic modification for enzyme production. One of the genetic manipulation of rumen bacteria can perform for production of starch digestive enzyme for the ...

متن کامل

Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli.

d-Arabitol was observed to be toxic to many laboratory strains of Escherichia coli K-12, and xylitol was found to be toxic to an existing E. coli C mutant strain. Fructose-specific components of the phosphoenolpyruvate:sugar phosphotransferase system are required for xylitol toxicity. Selection for xylitol resistance results in Fru(-) strains blocked in fructose phosphotransferase. Introduction...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

The Effect of Heat Shock on Production of Recombinant Human Interferon Alpha 2a (rhIFN α -2a) by Escherichia coli

Recombinant human interferon alpha 2a (rhIFN α -2a) production and cell growth were monitored in a set of genetically modified E. coli strains (MSD1519, MSD1520, MSD 1521, MSD 1522, MSD 1523) producing rhIFN α -2a. The growth was followed at OD 600 nm, changes in cell physiology were detected by pyrolysis mass spectrometry (PyMS) of cell biomass and recombinant protein production was determined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbial Cell Factories

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005